
S
e

K
W
A
a

b

c

d

e

f

g

h

i

a

A
R
R
A

K
S
E
F
R
L

1

c
f
1
r
(
t
e

0
d

Agricultural and Forest Meteorology 150 (2010) 871–880

Contents lists available at ScienceDirect

Agricultural and Forest Meteorology

journa l homepage: www.e lsev ier .com/ locate /agr formet

patial portability of numerical models of leaf wetness duration based on
mpirical approaches

wang Soo Kima,∗, S. Elwynn Taylorb, Mark L. Gleasonc, Forrest W. Nutter Jr. c, Leonard B. Coopd,
illiam F. Pfendere, Robert C. Seemf, Paulo C. Sentelhasg, Terry J. Gillespieh,

nna Dalla Marta i, Simone Orlandini i

Mount Albert Research Centre, The New Zealand Institute for Plant & Food Research Limited, 120 Mt. Albert Road, Private Bag 92 169, Mt. Albert, Auckland, New Zealand
Department of Agronomy, Iowa State University, Ames, IA 50011, USA
Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
Integrated Plant Protection Center, Oregon State University Department of Botany and Plant Pathology, Corvallis, OR 97331, USA
USDA-ARS NFSPRC and Oregon State University Department of Botany and Plant Pathology, Corvallis, OR 97331, USA
Department of Plant Pathology, NYSAES, Cornell University, Geneva, NY 14456, USA
Agrometeorology Group, Department of Biosystem Engineering, ESALQ, University of São Paulo, P.O. Box 9, 13418-900, Piracicaba, SP, Brazil
Agrometeorology Group, Department of Land Resource Science, Ontario Agricultural College, University of Guelph, N1G 2W1 Guelph, ON, Canada
Department of Plant, Soil and Environmental Science, University of Florence, Piazzale delle Cascine, 18 50144 Firenze, Italy

r t i c l e i n f o

rticle history:
eceived 17 September 2009
eceived in revised form 3 February 2010
ccepted 15 February 2010

eywords:
urface wetness
mpirical model
uzzy logic
H

a b s t r a c t

Leaf wetness duration (LWD) models based on empirical approaches offer practical advantages over
physically based models in agricultural applications, but their spatial portability is questionable because
they may be biased to the climatic conditions under which they were developed. In our study, spatial
portability of three LWD models with empirical characteristics – a RH threshold model, a decision tree
model with wind speed correction, and a fuzzy logic model – was evaluated using weather data collected
in Brazil, Canada, Costa Rica, Italy and the USA. The fuzzy logic model was more accurate than the other
models in estimating LWD measured by painted leaf wetness sensors. The fraction of correct estimates
for the fuzzy logic model was greater (0.87) than for the other models (0.85–0.86) across 28 sites where
painted sensors were installed, and the degree of agreement k statistic between the model and painted
eaf wetness duration sensors was greater for the fuzzy logic model (0.71) than that for the other models (0.64–0.66). Values of
the k statistic for the fuzzy logic model were also less variable across sites than those of the other models.
When model estimates were compared with measurements from unpainted leaf wetness sensors, the
fuzzy logic model had less mean absolute error (2.5 h day−1) than other models (2.6–2.7 h day−1) after
the model was calibrated for the unpainted sensors. The results suggest that the fuzzy logic model has
greater spatial portability than the other models evaluated and merits further validation in comparison

er a
with physical models und

. Introduction

Water plays an important role in many biological and physi-
al processes which take place on plant surfaces. For example, it
acilitates infection by many foliar pathogens (Huber and Gillespie,
992). Surface wetness can also hamper satellite-based microwave
emote sensing of crop canopy temperature and soil moisture

Basist et al., 1998; Hornbuckle et al., 2006) and affect the deposi-
ion of atmospheric pollutants on leaves (Klemm et al., 2002; Kruit
t al., 2008).

∗ Corresponding author.
E-mail address: kwang.kim@plantandfood.co.nz (K.S. Kim).

168-1923/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.agrformet.2010.02.006
wider range of climate conditions.
© 2010 Elsevier B.V. All rights reserved.

No standard for calibration of leaf wetness duration (LWD) mea-
surements has been accepted (Sentelhas et al., 2004a; Dalla Marta
et al., 2005), which makes it difficult to compare and interpret these
measurements. Occurrence of wetness is influenced by leaf posi-
tion and arrangement as well as canopy structure (Sentelhas et al.,
2005; Batzer et al., 2008). Measurements of LWD are also affected
by height of sensor installation, angle of deployment, and orienta-
tion (Lau et al., 2000; Sentelhas et al., 2004a). It is recommended
to coat the surface of sensors with latex-based paint to increase
their precision and sensitivity (Davis and Hughes, 1970; Sentelhas

et al., 2004b). To account for variability in wetness measurement
and occurrence, multiple sensors can be installed at a single site
(Francl and Panigrahi, 1997; Magarey et al., 2004), but monitor-
ing and data handling costs rise proportionally as the number of
sensors increases.

dx.doi.org/10.1016/j.agrformet.2010.02.006
http://www.sciencedirect.com/science/journal/01681923
http://www.elsevier.com/locate/agrformet
mailto:kwang.kim@plantandfood.co.nz
dx.doi.org/10.1016/j.agrformet.2010.02.006
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Table 1
Average climate conditions at weather stations during the study period.

Site name Periods (day/month/year) Na Tb (◦C) RHb (%) RDb (%)

Ames 6/5/1998–19/10/1998, 2/5/1999–3/10/1999 303 19.8 77.6 37.0
Ash Hollow Vineyard 1/5/2007–17/6/2007 48 17.5 53.6 10.4
Belleville 25/6/1998–17/8/1998, 2/5/1999–30/9/1999 196 23.8 82.8 24.5
Bondville 1/5/1998–17/8/1998, 3/6/1999–30/9/1999 204 21.9 79.8 29.9
Brookings 1/5/2006–30/6/2006, 1/5/2007–30/6/2007 120 13.5 84.2 30.0
Ceiba 7/11/2000–12/12/2000, 19/1/2001–24/4/2001, 20/12/2002–1/4/2003 227 27.9 63.9 7.0
Corvallis 1/5/2000–12/8/2000, 1/5/2006–30/9/2006, 1/5/2007–21/7/2007 336 16.7 68.6 22.6
Crawfordsville 8/5/1998–19/10/1998, 2/5/1999–3/10/1999 303 20.3 77.4 36.0
Davis Gawith Gala 1/5/2007–17/6/2007 48 17.4 57.2 10.4
Dee Flat 1/5/2006–30/6/2006, 1/5/2007–30/6/2007 92 15.1 60.6 10.9
Dixon Springs 23/4/1998–17/8/1998, 2/5/1999–30/9/1999 225 21.4 76.4 21.8
Elora 1/8/2003–22/9/2003 40 18 82.7 32.5
Garza 13/4/1999–22/9/1999, 7/11/2000–23/4/2001, 21/12/2002–1/4/2003 423 26.1 81.9 34.3
Geneva 1/5–30/9c 1389 18.8 74.1 37.0
Gordon 23/4/1998–19/10/1998, 2/5/1999–3/10/1999 322 18.2 67 26.4
Hood River 1/5/2006–30/6/2006, 1/5/2007–30/6/2007 118 15.9 56.2 16.1
Junction City 1/5/2006–7/7/2006, 1/5/2007–8/7/2007 134 15.4 75.3 33.6
Lewis 6/5/1998–19/10/1998, 2/5/1999–3/10/1999 307 20.1 79.3 32.2
Liberia 14/4/1999–22/9/1999, 8/11/2000–23/4/2001, 14/12/2002–31/3/2003 425 27 66.3 27.1
Macleay 1/5/2006–17/7/2006 75 15.7 71 29.3
Medford 1/5/2006–30/6/2006, 1/5/2007–30/6/2007 121 17.1 59.6 16.5
Mojica 6/5/1999–21/9/1999, 7/11/2000–19/4/2001, 19/12/2002–30/3/2003 369 27.5 67.5 26.6
Mondeggi Lappeggi 1/5–30/9d 1406 21.4 73.2 29.1
Monmouth 15/4/1998–17/8/1998, 2/5/1999–29/9/1999 231 19.7 77.9 24.7
Nashua 5/5/1998–19/10/1998, 2/5/1999–3/10/1999 301 19.1 79.4 34.2
Oliver Cherries 1/5/2007–17/6/2007 48 16.9 60.3 14.6
O’Neill 22/4/1998–18/10/1998, 2/5/1999–3/10/1999 270 18.2 75.9 30.4
Parkdale 1/5/2006–30/6/2006, 1/5/2007–30/6/2007 115 13.9 64 22.6
Parma 1/5/2006–30/6/2006, 1/5/2007–30/6/2007 121 18.6 47.5 86.8
Pinegrove 1/5/2006–30/6/2006, 1/5/2007–30/6/2007 118 15.3 63 16.1
Piracicaba 15/7/2003–23/8/2003 29 19.4 77.4 27.6
Puntarenas 25/4/1999–21/9/1999 102 26.6 86.9 64.7
Red Cloud 25/4/1998–19/10/1998, 2/5/1999–3/10/1999 317 21.9 78.5 31.2
Rodigheiro 1/5/2007–17/6/2007 48 17.2 54.9 12.5
Santa Cruz 13/4/1999–18/8/1999, 8/11/2000–23/4/2001, 21/12/2002–31/3/2003 384 27.2 68.6 24.7
Seven Hills Vineyard 1/5/2007–17/6/2007 48 17.6 47.5 12.5
Shedd 1/5/2007–2/7/2007 62 13.7 77 27.4
Sidney 24/4/1998–19/10/1998, 2/5/1999–3/10/1999 322 17.5 63.3 26.1
Silverton 1/5/2007–15/7/2007 75 15 68.9 32.0
St. Charles 17/4/1998–17/8/1998, 14/5/1999–30/9/1999 218 18.8 75.8 26.1
Sutherland 6/5/1998–19/10/1998, 2/5/1999–3/10/1999 306 18.8 77.9 36.9
West Point 22/4/1998–19/10/1998 167 19.6 78.5 26.3
Worden 1/5/2006–30/6/2006, 1/5/2007–30/6/2007 117 13.6 60.7 76.9
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Number of 24-h periods.
b Daily averages of temperature (T) and relative humidity (RH); percentage of da
c Measurements were taken from 1994 to 2005.
d Measurements were taken from 1998 to 2007. No measurement in 2002 was in

In order to circumvent some of the limitations associated with
easurement of LWD, wetness occurrence has been simulated

sing numerical models. LWD models are classified into three gen-
ral categories: physically based (hereafter termed physical) (Pedro
nd Gillespie, 1982; Madeira et al., 2002; Magarey et al., 2006;
entelhas et al., 2006), empirical (Gleason et al., 1994; Francl and
anigrahi, 1997), and physical–empirical hybrids (Kim et al., 2004).

Physical models, which simulate heat exchange processes
etween a plant surface and the atmosphere, have potential to be
ighly accurate in LWD estimation at any location, since these pro-
esses operate identically everywhere (Pedro and Gillespie, 1982;
adeira et al., 2002; Sentelhas and Gillespie, 2008). For exam-

le, Magarey (1999) developed the surface wetness energy balance
SWEB) model to estimate LWD on grapes. For agricultural deci-
ion support, however, physical models face practical limitations
ecause some of their input variables are not widely available. For
xample, physical models depend on net radiation, but net radia-

ion is seldom measured at standard automated weather stations
Sentelhas and Gillespie, 2008).

Empirical models are based on decision rules that are optimized
y statistical best-fit procedures for specific locations and time peri-
ds. As a result, they often have relatively small errors in LWD
h measurable rain (RD) during the study period.

d in the present study.

estimation within a region where they were developed (Gleason et
al., 1994). Because most empirical models do not explicitly incorpo-
rate physical processes influencing wetness occurrence, they would
be expected to have limited spatial portability (Crowe et al., 1978;
Francl and Panigrahi, 1997). For example, Sentelhas et al. (2008)
found that it was necessary to obtain a site-specific correction
parameter for an empirical model based on a relative humidity (RH)
threshold in order to estimate LWD accurately. However, empiri-
cal models are readily adaptable to agricultural uses because they
generally depend on input weather variables such as RH that are
commonly measured at most automated weather stations (Sutton
et al., 1984; Sentelhas et al., 2008).

Hybrid approaches that combine physical principles and empir-
ical techniques have been developed in an attempt to overcome
limitations of both approaches. For example, Kim et al. (2004) incor-
porated an energy balance equation within the framework of a
fuzzy logic system, but optimized the fuzzy logic system using sta-

tistical analysis of training data. Hybrid models that are based on
physical principles, yet use readily available weather variables, can
potentially possess both portability and practical applicability.

Because climate conditions associated with wetness occurrence
may differ by geographic region (Crowe et al., 1978; Duttweiler et
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ig. 1. Locations of weather station where measurements of leaf wetness duration
SA, and Ontario, Canada; (C) northwestern Costa Rica; (D) São Paulo, Brazil; and (E

l., 2008), empirical approaches may require reassessment when
hey are transported from regions where they were developed
o regions with different climates. However, comparative spatial
ortability of empirical and hybrid models has rarely been evalu-
ted, in part because of difficulty in obtaining comparable wetness
easurements under a diverse set of climate conditions. The objec-

ive of our study was to compare accuracy and spatial portability of
ybrid and empirical LWD models using data sets collected from
eather stations across a wide range of locations and climates.

hysical models were not included because of limited availability
f input data sets that included net radiation.

. Materials and methods

.1. Measurement of weather variables

Air temperature, RH, wind speed, and LWD were measured at
2 weather stations in Brazil, Canada, Italy, and the United States
f America (USA) (Fig. 1). Except for Brazil, measurements between
May and 30 September were utilized to encompass most of the

rowing season of major crops at each site. In Brazil, data were
easured from July to August, during a growing season in the sub-

ropics. In addition to these data, previously published weather
easurements at 21 sites in the midwestern USA and northwest-

rn Costa Rica (Kim et al., 2004, 2005) were also included in our
nalysis (Table 1).

The occurrence of wetness was detected using electrical
mpedance sensors (Table 2) (Davis and Hughes, 1970). Voltage

hange was recorded and converted to the percentage of time wet
uring each recording interval. When occurrence of wetness was
etected during >50% of a recording interval, the interval was clas-
ified as a wet period; when ≤50%, the interval was recorded as
ry. At Geneva, however, wetness sensors were calibrated to indi-
collected in: (A) Oregon and Idaho, USA; (B) Nebraska, Iowa, Illinois and New York,
cany, Italy.

cate wetness for any hour during which wetness was detected for
>20% of the recording interval. Thus, wetness measurement for
>20% of the recording interval was used as a threshold to define
a wet period. For sites with a single wetness sensor, a wet period
was determined to begin when this sensor detected wetness occur-
rence in the given period. At sites where two or more sensors were
installed, a given time period was classified as wet when wetness
was detected for longer than the threshold of recording interval
by at least two wetness sensors. Wetness sensors were installed
over managed turfgrass except at Corvallis, Junction City, Macleay,
Shedd and Silverton where sensors were installed over non-mowed
grass seed crops whose canopy height ranged from 0.1 m to 0.6 m.
At these sites, deployment height was adjusted to keep the sensor
at the top of the canopy.

2.2. Leaf wetness duration models

Empirical models have depended on approaches based on a
threshold (Sentelhas et al., 2008), a decision tree (Gleason et al.,
1994), a fuzzy logic system (Kim et al., 2004) or artificial neural net-
works (Francl and Panigrahi, 1997). Among these models, the RH
threshold model, the decision tree model and the fuzzy logic system
model require small number of input variables, which would facil-
itate wide use of models. Thus, these models were used to analyze
their spatial portability in the present study.

2.2.1. RH threshold model
The duration of periods with RH ≥ 90% has long been used to esti-
mate LWD (Crowe et al., 1978; Sutton et al., 1984). Sentelhas et al.
(2008) reported that this RH threshold model had greater accuracy
in estimating LWD than a model that used dew point depression
as the threshold. In our study, RH ≥ 90% was used as the threshold;
this model was designated the RH model.
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Table 2
Configuration of wetness sensors at weather stations.

Site Typea Na Deploymentb Height (m)

Angle (◦) Orientation Sensor Modelc

Ash Hollow Vineyard UFC 1 45 E 1 1
Brookings UFP 1 45 S 1.5 1.5
Corvallisd PFP 4 45 W×4 0.1–0.6e 0.3
Davis Gawith Gala UFC 1 45 E 1 1
Dee Flat UFP 1 45 NW 1.25 1.25
Elorad PFP 1 30 N 0.3 0.3
Geneva UFP 4 45 S×2, N×2 0.2 0.2
Hood River UFP 1 45 NW 1.25 1.25
Junction Cityd PFP 2 45 W×2 0.1–0.6e 0.3
Macleayd PFP 2 45 W×2 0.1–0.6e 0.3
Medford UFP 1 45 S 1.25 1.25
Mondeggi Lappeggi UET 1 45 N 1.6 1.6
Oliver Cherries UFC 1 45 E 1 1
Parkdale UFP 1 45 NW 1.25 1.25
Parma UFP 1 45 S 1.25 1.25
Pinegrove UFP 1 45 NW 0.6 0.6
Piracicabad PFP 1 45 S 0.3 0.3
Rodigheiro UFC 1 45 SE 1 1
Seven Hills Vineyard UFC 1 45 E 1 1
Sheddd PFP 2 45 W×2 0.1–0.6e 0.3
Silvertond PFP 2 45 W×2 0.1–0.6e 0.3
Worden UFP 1 45 NW 0.6 0.6
IA, IL, NE, CRf PFP 1 45 S 0.3 0.3

a UFP and PFP indicate unpainted and painted flat panel sensors (Model 237, Campbell Scientific, Logan, UT, USA), respectively. UFC represents Adcon unpainted sensors
(Models A723 and A733, Adcon Telemetry GmbH, Klosterneuburg, Austria). UET indicates unpainted transducer sensor (S.W. and W.F. Burrage, Ashford, Kent, UK). N represents
the number of sensors deployed at the weather stations.

b Deployment angle and orientation. E, W, N, and S indicate east, west, north, and south-facing, respectively. ×N indicates N replicates.
c Height to which wind speed was adjusted to estimate leaf wetness duration using the Fuzzy and CART models.
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d The time step of data recording was 15 min. At Corvallis in 2000, it was 30 min.
e The height of sensors ranged from 0.1 m to 0.6 m. Sensor height was adjusted to
f Configuration of wetness sensor was the same for all sites in Iowa (IA), Illinois (

.2.2. Decision tree model with wind speed correction
Gleason et al. (1994) suggested a model that combined

lassification and regression tree analysis with stepwise linear dis-
riminant analysis, which was dependent on dew point depression
DPD), RH, and wind speed. High values of DPD, which is esti-

ated using air temperature and RH, is used to identify when the
ifference between dew point temperature and surrounding air
emperature is too large to allow wetness occurrence. High RH and
ow DPD identify conditions when leaf temperature is likely to be
ess than dew point temperature, drying is slow or precipitation
s occurring. Thresholds of these variables are determined using
limate conditions at the locality where wetness has been recorded.

The model consisted of a set of nodes that formed a decision tree.
ach node contained if-then statements to determine whether or
ot input data exceeded a threshold associated with the node. The
utcome of an if-then statement at a node determined which of
wo subsequent nodes was evaluated. Starting at the initial node
f the tree, if-then statements were evaluated to reach an ultimate
ode that indicated wetness presence or absence.

This approach had greater accuracy in LWD estimation than the
H model and an artificial neural network model (Gleason et al.,
994; Francl and Panigrahi, 1997). Kim et al. (2002) reported that
he accuracy of the model increased when wind speed inputs to
he model were corrected to the height of wetness sensors. In the
resent study, the wind-corrected model, which was previously
amed CART/SLD/Wind (Kim et al., 2002), was designated the CART
odel.
.2.3. Model using a fuzzy logic system
Kim et al. (2004) suggested a LWD model based on a fuzzy

ogic system, which was designated the Fuzzy model. In a fuzzy
ogic system, a set of rules is defined using current knowledge of
the sensor at the top of the crop canopy.
d Nebraska (NE) in the USA, and in northwestern Costa Rica (CR).

a phenomenon of interest. These rules are defined in natural lan-
guage to describe the reasoning, e.g., ‘if net radiation is low, then
wetness is likely to occur’. To evaluate these rules, membership
functions of each input variable are defined to associate quanti-
tative data with the corresponding natural language terms and
predict whether leaves are ‘wet’ or ‘dry’. For example, a rule state-
ment is required to assign numerical values to the terms ‘high’
and ‘low’ for a variable such as net radiation. To evaluate phrases
in the rule statements, e.g., ‘if-then’ or ‘and’, fuzzy operators are
used. The outcomes of fuzzy operators are combined to deter-
mine the degree of truth of the rules. Further description of fuzzy
logic systems can be found in Klir and Yuan (1995) and Nelles
(2000).

The Fuzzy model inferred wetness occurrence based on energy
balance principles, although the reasoning was stated in natural
language. The Fuzzy model depends on air temperature, RH, and
wind speed measurements to derive its input variables – net radi-
ation, vapor pressure deficit and wind speed – at a sensor surface
(Kim et al., 2004). The value of net radiation was calculated, based
on the method proposed by Idso and Jackson (1969), under the
assumption of a clear sky condition, which required no cloud cover
data as inputs but would underestimate incoming long wave radi-
ation if cloud cover was present. The membership functions were
defined through training processes. Fuzzy operators were used to
determine a set L that represented the outcome of the reasoning.
Because the Fuzzy model depends on multiple rule statements,
multiple sets of L were obtained as a result of the reasoning. To
determine the final outcome of fuzzy logic reasoning, the set of L

was combined into a single set O in a process called aggregation.
Subsequently, a defuzzification process was performed to convert
O into a numeric value o ∈ [0,1]. Absence of wetness was predicted
when the value of o was <0.5; otherwise, the model predicted occur-
rence of wetness.
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result, it is possible for an LWD model to predict sensor behavior
with a high degree of accuracy simply by predicting the prepon-
derance of hours in which wetness was absent. Dietterich (2000)

Fig. 2. Boxplot of the statistics for the leaf wetness duration models, using data
K.S. Kim et al. / Agricultural and F

.3. Calibration of the Fuzzy model for unpainted sensors

The Fuzzy model was developed and validated using painted
lectrical impedance LWD sensors (Kim et al., 2004). However,
npainted electrical impedance sensors are often deployed to mea-
ure LWD (Francl and Panigrahi, 1997), principally because almost
ll suppliers sell them in this condition. Unpainted sensors may fail
o detect wetness occurrence under marginal conditions because
npainted sensors are less sensitive to small water droplets than
re painted sensors (Sentelhas et al., 2004b). Therefore, bias can
rise when measurements from unpainted sensors are compared
ith estimates using the Fuzzy model.

In the present study, a version of the Fuzzy model was cali-
rated to estimate LWD measurements made by unpainted LWD
ensors, since these sensors were used exclusively at some of the
tudy sites (Table 2). Kim et al. (2005) reported that the Fuzzy
odel estimated LWD accurately under semi-arid climate condi-

ions after applying an empirical correction factor that increased
he output of the Fuzzy model by 5%. Because unpainted sensors
re less sensitive to small amounts of water than painted sensors,
specially under marginal conditions for leaf wetness detection, the
uzzy model would be expected to overestimate LWD measured
y unpainted sensors, since the model was built with reference to
ainted sensors. Therefore, the Fuzzy model needed a correction
actor to decrease the output of the model. Thus, the output of the
uzzy model was decremented using a correction factor to emulate
npainted sensors.

Our correction factor for unpainted sensors was derived using
simple parameterization of cloud cover for a numerical weather
odel (Slingo, 1987):

RH =
[

Max
{

0.0,
RH − 80

20

}]2
(1)

here CRH is the coefficient of humidity effect on an unpainted
ensor. This function increases in value as the RH increases above
0%, which fits the assumption that unpainted sensors approach the
erformance of painted sensors at very high humidity. A correction
actor f for the Fuzzy model was defined as follows:

= 0.95 + CRH × 0.05 (2)

he output oc of the adjusted Fuzzy model was the product of o and
at a given time period. When RH was <80% at a period, the value
f CRH and f became 0 and 0.95, respectively. Thus, the value of oc

ecame equivalent to 95% of o, to simulate the weaker sensitivity of
npainted sensors at lower humidity. When RH was 100%, the val-
es of CC and f became 1, resulting in no difference between outputs
f the adjusted and original Fuzzy models, which simulated equal
erformance of painted and unpainted sensors at very high humid-

ty. When the value of oc was <0.5, it was predicted that no wetness
as present; otherwise, wetness was assumed to be present.

.4. Implementation of LWD models

Spatial portability of RH, CART, Fuzzy and adjusted Fuzzy models
as assessed using weather data collected across 43 sites. A com-
uter program module was created to implement the LWD models
sing Microsoft® Visual Studio 6 C++ (Microsoft, Richmond, WA,
SA). The module was embedded in Microsoft® Excel files that con-

ained weather measurements at each site in a given year. A script
as written to run the LWD models in each Excel file.
.5. Analysis of estimates

Estimates of LWD were analyzed at intervals of 15, 30, or 60 min
epending on the time step of data recorded at each site (Table 2).
eteorology 150 (2010) 871–880 875

The interval was classified as wet or dry using measurements by on-
site sensors as inputs to the LWD models. A four-cell contingency
table was used to calculate a degree of agreement statistic for the
LWD models as follows:

Estimated-Wet Estimated-Dry

Observed-Wet Hits (H) Misses (M)
Observed-Dry False alarms (F) Correct negatives (N)

H and F denote the number of positive, i.e., ‘wet’, estimates that
correspond to observed occurrence and absence of wetness,
respectively. M and N represent the number of negative, i.e., ‘dry’,
estimates that were accompanied by occurrence and absence of
wetness, respectively.

The probability that an LWD model and electronic sensor agree
can be estimated using the fraction of correct estimates (�1) as
follows:

�1 = H + N

H + M + F + N
. (3)

However, leaf wetness data may contain one class, e.g., ‘dry’, more
frequently than the other class, e.g., ‘wet’, since in most temper-
ate environments the dry hours far outnumber the wet hours. As a
obtained at 28 sites where painted sensors were installed: (A) fraction of correct
estimates (�1); (B) a degree of agreement statistic (k). Fuzzy, RH and CART indicate
the Fuzzy model, the RH model and the CART model, respectively. Top and bottom
of box and the whiskers indicate upper quartile, lower quartile, and the 10th and
90th percentiles of the box plot, respectively. Dots represent data above the 90th
and below 10th percentiles.
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sed a k statistic to correct for this artifact as follows:

= �1 − �2

1 − �2
, (4)

here �2 is an estimate of the probability that the two classifiers,
.g., LWD model and sensor, agree by chance, given the observed
ounts in the contingency table. The term �2 is defined as follows:

2 = (H + M) · (H + F)

(H + M + F + N)2
+ (F + N) · (M + N)

(H + M + F + N)2
(5)

1 and k were calculated using all recording intervals over the
tudy period at each site. The coefficient of variation of the k value,
Vk (%), was calculated for the LWD models to quantify spatial
ortability of the models across our study sites as follows:

Vk = �

�
× 100, (6)

here � and � were standard deviation and average, respectively,
f the k values for an LWD model across all sites.

LWD estimates, which were the number of wet hours per 24-h
eriod, were calculated from sub-hourly and hourly data for periods
hat began at 12:00 pm and ended at 11:59 am the next day. Mean
rror (ME) and mean absolute error (MAE) were calculated for the
WD models. ME was the 24-h average of differences between mea-

ured and estimated LWD, whereas MAE was obtained by averaging
bsolute values of 24-h differences between LWD measurements
nd estimates. Because it was uncertain whether MAE would have
normal distribution, which would limit use of parametric statisti-
al tests such as Least Significant Difference test, Wilcoxon’s signed

able 3
omparison between measurements and estimates of leaf wetness duration for 24-h peri
IL), Nebraska (NE) and Oregon (OR), USA, northwestern Costa Rica (CR), Ontario (ON), Ca

Site Na Db MEb

Fuzzyc RH

Ames, IA 303 8.7 −0.2 −0
Belleville, IL 196 7.6 2.2 3
Bondville, IL 204 10 −1.4 0
Ceiba, CR 227 2.1 −0.8 −0
Corvallis, OR 336 9.7 −1.5 −4
Crawfordsville, IA 303 8.1 0.9 −0
Dixon Springs, IL 225 9.2 −1.3 −1
Elora, ON 40 14.1 −0.7 −1
Garza, CR 423 9.3 2.3 2
Gordon, NE 322 8.5 −1.3 −3
Junction City, OR 134 12.8 −2.1 −5
Lewis, IA 307 7.6 1.4 1
Liberia, CR 425 7 −1.6 −1
Macleay, OR 75 9.2 −1.0 −3
Mojica, CR 369 4.6 −0.9 −0
Monmouth, IL 231 7.5 −0.8 1
Nashua, IA 301 8 2.7 2
O’Neill, NE 270 6.9 2.7 1
Piracicaba, SP 29 10.8 0.6 −1
Puntarenas, CR 102 12.7 −1.5 −0
Red Cloud, NE 317 7.8 1.6 1
Santa Cruz, CR 384 5.6 −0.5 −0
Shedd, OR 62 13 −1.6 −4
Sidney, NE 322 6.5 0.2 −1
Silverton, OR 75 8.7 −1.1 −6
St. Charles, IL 218 8.6 0.0 0
Sutherland, IA 306 8 1.8 0
West Point, NE 167 10.5 −1.1 −1
�d – 8.7 −0.1 −0
�d – 2.5 1.5 2
CVd – – – –

a N is total number of 24-h periods in the data set.
b Average leaf wetness duration (D), mean error (ME), and mean absolute error (MAE)

ifferent at p = 0.05 from Wilcoxon’s signed rank test.
c Fuzzy, RH and CART indicate the Fuzzy model, the RH model and the CART model, res
d �, � and CV represent mean, standard deviation and coefficient of variation (%), respe
eteorology 150 (2010) 871–880

rank test was performed to examine differences in MAE among
LWD models using the JMP statistical package ver. 6.0 (SAS Institute
Inc., Cary, NC, USA).

2.6. Analysis of temporal variability of leaf wetness duration
models

LWD data were obtained for one or two seasons at most sites.
However, these data were collected for more than 10 years at two
sites, Mondeggi Lappeggi, Italy and Geneva, NY. At these sites,
where unpainted sensors were installed, temporal variability of
LWD models was analyzed in addition to spatial portability. At
Mondeggi Lappeggi, Dalla Marta et al. (2005) determined statis-
tics for accuracy of the SWEB model in comparison with unpainted
wetness sensors. The �1 values for the SWEB model were derived
from their statistics and compared with those for the numerical
models used in this study.

3. Results

3.1. Sites where painted LWD sensors were deployed

The Fuzzy model had the highest value of �1 at more sites than
the other models. The values of �1 for the Fuzzy model ranged from

0.84 to 0.93, higher than for the CART and RH models (Fig. 2A). For
example, the median of �1 values for the CART and RH models was
similar to the first quartile value of �1 for the Fuzzy model.

Overall, the k value for the Fuzzy model (0.71) was greater than
that for the CART (0.66) and RH models (0.64). The k value for the

ods among sites where painted wetness sensors were installed in Iowa (IA), Illinois
nada, and Sao Paulo (SP), Brazil.

MAEb

c CARTc Fuzzy RH CART

.9 0.3 2.7 b 3.2 a 2.8 b

.8 2.9 2.6 c 4.2 a 3.4 b

.1 −1.6 2.7 b 3.9 a 3.0 b

.7 1.1 1.7 a 1.8 a 2.0 a

.9 −1.6 2.0 c 4.9 a 2.2 b

.1 1.9 2.0 c 2.3 b 2.7 a

.1 0.4 2.4 b 2.9 a 2.4 b

.9 0.1 1.4 b 2.2 a 1.3 b

.8 6.5 2.5 c 2.9 b 6.5 a

.1 −2.1 3.0 b 4.0 a 3.1 b

.2 −2.3 2.5 c 5.3 a 2.7 b

.3 1.2 3.1 b 3.4 a 3.4 ab

.4 1.4 2.5 c 2.7 b 3.3 a

.6 −1.8 1.9 c 3.7 a 2.3 b

.7 1.4 1.8 b 1.8 b 3.0 a

.2 −0.8 2.5 c 3.6 a 3.0 b

.0 3.3 3.4 b 3.4 b 3.9 a

.6 2.4 4.0 b 4.4 a 4.1 ab

.3 1.4 2.6 b 3.2 ab 3.1 a

.8 3.5 1.8 b 1.4 c 3.5 a

.8 1.9 3.1 b 3.7 a 3.5 a

.4 2.0 1.1 c 1.2 b 2.3 a

.9 −2.3 1.7 c 4.9 a 2.3 b

.8 −1.0 2.3 b 2.7 a 2.5 ab

.2 −2.6 2.8 c 6.2 a 3.4 b

.1 −0.6 2.1 b 2.7 a 2.5 a

.7 1.4 3.3 a 3.3 a 3.2 a

.7 −1.0 2.6 a 2.8 a 2.3 b

.9 0.5 2.4 3.3 3.0

.4 2.1 0.64 1.17 0.92
– 26.3 35.5 30.9

per 24-h period. Within each row, MAE values sharing a letter are not significantly

pectively.
ctively.
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Fig. 3. Boxplot of the statistics for the leaf wetness duration models, using data
obtained at 15 sites where unpainted sensors were installed: (A) fraction of correct
estimates (�1); (B) a degree of agreement statistic (k). Fuzzy, RH, CART, cFuzzy indi-
cate the Fuzzy model, the RH model, the CART model and the adjusted Fuzzy model
for unpainted leaf wetness sensors, respectively. Top and bottom of box and the
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uzzy model was highest at more sites than for either of the other
odels, and the CART and RH models tended to have lower k val-

es than the Fuzzy model (Fig. 2B). Variation of k values across sites
as lower for the Fuzzy and CART models than the RH model. At

8 sites in Brazil, Costa Rica, Canada, and the USA, the CVk value
as 12%, 12%, and 18% for the Fuzzy, CART, and RH models, respec-

ively.
Overall, the Fuzzy and RH models underestimated LWD at most

ites (Table 3). On average, ME for the Fuzzy model was closer to
ero than that of other models, and mean MAE values were lower
or the Fuzzy model than for other models. The Fuzzy model had
he lowest MAE at 22 of 28 sites, and the value of MAE for the
uzzy model showed relatively small variation (1.1–4.0 h day−1)
ompared with 1.2–6.2 and 1.3–6.5 h day−1 for the CART and RH
odels, respectively. There were four and two sites where the CART

nd RH models, respectively, had the smallest MAE values. How-
ver, there was only one site where MAE for these models was
ignificantly smaller than that for the Fuzzy model.

.2. Sites where unpainted LWD sensors were deployed

Values of �1 for the Fuzzy model averaged about 0.87 at
ites where unpainted sensors were installed, which was smaller
han that at sites where painted sensors were deployed (0.88)
Fig. 3A). On average, the adjusted Fuzzy model had a higher �1
alue (0.89) than other models. Values for the adjusted Fuzzy
odel were greater than for the original Fuzzy model at 73% of

npainted-sensor sites. The RH model had the highest �1 value
t more unpainted-sensor sites than the other models, but val-
es for the RH model were similar to those for the adjusted Fuzzy
odel.
The k values for the LWD models were considerably lower at

ites where unpainted sensors were installed than at sites where
ainted sensors were deployed. The Fuzzy model had the highest

value at more sites than did other models. For example, the k

alues for the Fuzzy and RH models were greatest at six of 15 sites.
n average, the k value for the Fuzzy model was greater (0.52) than

hat for the RH model (0.44). The adjusted Fuzzy model had lower
values (0.50) than the original Fuzzy model, but the median for

able 4
omparison between measurements and estimates of leaf wetness duration for 24-h peri

daho (ID), and New York (NY) in the USA, and the province of Tuscany (TU) in Italy.

Site Na Db MEb

Fuzzyc cFuzzyc

Ash Hollow Vineyard, OR 48 1.9 −0.1 −1.0 −
Brookings, OR 120 11.2 4.4 1.9
Davis Gawith Gala, OR 48 4 −1.3 −2.4 −
Dee Flat, OR 92 3.6 1.5 −0.7 −
Geneva, NY 1389 6.1 1.6 −1.1 −
Hood River, OR 118 2.9 0.7 −1.3 −
Medford, OR 121 3.4 2.2 −0.5 −
Mondeggi Lappeggi, TU 1406 5.6 3.8 2.6
Oliver Cherries, OR 48 2 2.4 0.6 −
Parkdale, OR 115 7.2 −0.5 −3.1 −
Parma, ID 121 2.2 −0.6 −1.7 −
Pinegrove, OR 118 7.9 −1.1 −3.4 −
Rodigheiro, OR 48 1.8 −0.1 −1.0 −
Seven Hills Vineyard, OR 48 1.6 −1.4 −1.5 −
Worden, OR 117 7.5 −0.6 −3.7 −
�d – 4.6 0.7 −1.1 −
�d – 2.9 1.9 1.8
CVd – – – –

a Total number of 24-h periods.
b Average leaf wetness duration (D), mean error (ME), and mean absolute error (MAE)

ifferent at p = 0.05 from Wilcoxon’s signed rank test.
c Fuzzy, RH, CART, cFuzzy indicate the Fuzzy model, the RH model, the CART model and
d �, � and CV represent mean, standard deviation and coefficient of variation (%), respe
whiskers indicate upper quartile, lower quartile, and the 10th and 90th percentiles
of the box plot, respectively. Dots represent data above the 90th and below 10th
percentiles.

the adjusted Fuzzy model (0.54) was similar to that for the original

Fuzzy model (0.54). CVk values for LWD models ranged from 30% to
35% across sites where unpainted sensors were installed, and were
similar among the models. For example, CVk values for the Fuzzy
and RH models were 30% and 33%, respectively.

od among sites where unpainted sensors were installed in the state of Oregon (OR),

MAEb

RHc CARTc Fuzzy cFuzzy RH CART

0.6 −1.0 1.8 a 1.6 a 1.6 a 1.5 a
1.5 3.8 4.7 a 3.5 c 3.9 b 4.4 a
2.9 −1.4 3.1 a 3.2 a 3.1 a 3.2 a
1.7 0.3 2.1 a 1.4 c 1.8 ab 1.5 bc
0.7 2.9 2.7 b 2.2 c 2.2 c 3.6 a
2.0 0.0 2.2 a 1.8 b 2.1 a 2.0 ab
1.4 1.4 2.8 a 1.8 c 1.7 c 2.3 b
2.5 5.1 4.1 b 3.3 c 3.2 d 5.4 a
0.3 2.0 3.5 a 2.8 b 2.2 c 3.2 ab
4.6 −1.6 2.4 c 3.3 b 4.6 a 2.5 c
1.8 −1.0 1.7 ab 1.7 b 1.8 a 1.6 ab
4.3 −1.8 1.7 d 3.4 b 4.3 a 2.2 c
1.2 −0.2 2.0 a 1.6 a 1.5 a 1.9 a
1.4 −1.4 1.4 a 1.5 a 1.4 a 1.4 a
5.2 −2.9 2.7 c 3.9 b 5.2 a 3.1 c
1.6 0.3 2.6 2.5 2.7 2.6
2.1 2.3 1.0 0.9 1.2 1.2
– – 36.7 36.0 45.9 43.9

per 24-h period. Within each row, MAE values sharing a letter are not significantly

the adjusted Fuzzy model for unpainted leaf wetness sensors, respectively.
ctively.
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Fig. 4. Fraction of correct estimates (�1) at sites where unpainted wetness sensors
were deployed for ≥10 years: (A) Mondeggi Lappeggi, Tuscany, Italy; (B) Geneva,
New York, USA. In 2002, no measurement was available for analysis at Mondeggi
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Fig. 5. A degree of agreement statistic (k) at sites where unpainted wetness sensors
were deployed for ≥10 years: (A) Mondeggi Lappeggi, Tuscany, Italy; (B) Geneva,

events, including light dew, fog or rain, need to be accounted
appeggi. Fuzzy, RH, CART, cFuzzy indicate the Fuzzy model, the RH model, the CART
odel and the adjusted Fuzzy model for unpainted leaf wetness sensors, respec-

ively. The square symbol indicates �1 values for the SWEB model, which were
erived from Dalla Marta et al. (2005).

The Fuzzy and CART models tended to overestimate LWD
hereas the RH model underestimated LWD at most of the
npainted-sensor sites (Table 4). For example, the Fuzzy and CART
odels overestimated LWD at seven sites whereas the adjusted

uzzy and RH models did so at three and two sites, respectively.
he MAE for the Fuzzy model, which ranged from 1.4 to 4.7 h day−1,
as greater than values for other models at seven sites. However,

pplication of the correction factor to the Fuzzy model reduced
he magnitude of MAE by about 4% on average. The MAE val-
es for the adjusted Fuzzy model ranged from 1.4 to 3.9 h day−1.

n contrast, values of MAE ranged from 1.4 to 5.4 h day−1 and
rom 1.4 to 5.2 h day−1 for the CART and RH models, respectively
Table 4).

.3. Sites where unpainted LWD sensors were deployed for more
han 10 years

Accuracy of the LWD models varied similarly at Mondeggi
appeggi and Geneva (Fig. 4). For example, �1 values for the LWD
odels increased at Mondeggi Lappeggi from 1998 to 2000. At
eneva, the �1 values for the LWD models decreased from 2001

o 2004. The RH model tended to have the greatest value of �1 at
oth sites in a given year. The �1 values for the adjusted Fuzzy
odel were similar to those for the RH model, whereas the Fuzzy

nd CART models had lower �1 values than the adjusted Fuzzy and
H models.

It appeared that the RH and adjusted Fuzzy models were more

ccurate in LWD estimation than the SWEB model at Mondeggi
appeggi (Fig. 4A). For example, the �1 values for the SWEB model
anged between 0.76 and 0.85 from 1995 to 1999 at the Mondeggi
appeggi site. In 2001, the SWEB model had a �1 value of 0.81.
New York, USA. In 2002, no measurement was available for analysis at Mondeggi
Lappeggi. Fuzzy, RH, CART, cFuzzy indicate the Fuzzy model, the RH model, the
CART model and the adjusted Fuzzy model for unpainted leaf wetness sensors,
respectively.

For the period, the RH and adjusted Fuzzy models had greater �1
values than the SWEB model except in 1997.

During the 10-year period, variability of the k values for the LWD
models was greater at Mondeggi Lappeggi than at Geneva (Fig. 5).
For example, the CVk value for the RH model was 18% and 5% at
Mondeggi Lappeggi and Geneva sites, respectively. The CVk value
for the adjusted Fuzzy model was similar to that for the RH model,
which was 18% and 8% at Mondeggi Lappeggi and Geneva sites,
respectively.

4. Discussion

Our results suggested that the Fuzzy model was more accurate
than the empirical models included in our study across a wide range
of geographic locations and climates. Firstly, the �1 and k values for
the Fuzzy model were greater than those for other models at sites
where painted sensors were installed. Secondly, the value of CVk
for the Fuzzy model was lower than for other models, indicating it
was more consistent in accuracy across locations. Thirdly, the MAE
values for the adjusted Fuzzy model tended to be lower than those
for other models at sites where unpainted sensors were installed.
These findings support our hypothesis that the Fuzzy model has
greater spatial portability than the other empirical models.

Where LWD measurements from painted sensors were avail-
able, the Fuzzy model estimated wetness occurrence more reliably
than other models. It is preferable to use painted sensors for agri-
cultural decision support systems in situations when all wetting
for, because their sensitivity is substantially greater than that
of unpainted sensors (Lau et al., 2000; Sentelhas et al., 2004b).
Unpainted sensors often record shorter wet periods than painted
sensors, except during conditions of rapid condensation due to
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apid cooling or under very humid conditions (Lau et al., 2000).
reuer et al. (2008) reported that a weather forecast would be con-
idered reliable when it was accurate 80–85% of the time. Under the
ssumption that �1 values > 0.8 indicate acceptably accurate LWD
stimation at a site, the Fuzzy model was accurate at all 28 sites
n the USA, Canada, Brazil, and Costa Rica where painted sensors

ere present (Fig. 2). Furthermore, the Fuzzy model had �1 values
f >0.85 at 75% of those sites whereas �1 values for the CART and
H models were >0.85 at about 54% of sites.

In the present study, the values of the k statistic for the Fuzzy
odel were higher and more consistent than for the other mod-

ls across sites with painted sensors. This indicated that the Fuzzy
odel corresponded with painted sensors more reliably than other
odels. The CART model had a relatively similar CVk value to that

f the Fuzzy model, implying that empirical models like CART could
ossess spatial portability even if they only implicitly represented
hysical principles of wetness occurrence. However, the median
nd inner quartile range of the k statistic distribution was higher
or the Fuzzy model than the CART model (Fig. 2B), indicating a

ore reliable prediction of painted sensor behavior.
The application of a correction factor allowed acceptable cal-

bration of the Fuzzy model to unpainted sensors. For example,
he MAE value for the Fuzzy model was significantly lower at
even sites after the correction factor was applied. The Fuzzy model
as developed to simulate wetness occurrence on a painted sen-

or surface (Kim et al., 2004). Thus, it is expected to raise false
larms when unpainted sensor data are utilized for model valida-
ion. Although the Fuzzy model tended to overestimate LWD at sites
here unpainted sensors were deployed (Table 4), the adjusted

uzzy model reduced the MAE values considerably.
It was challenging to determine spatial portability of the LWD

odels among sites where a single unpainted LWD sensor was
nstalled, because the LWD models had considerably greater vari-
bility across these sites than across those where painted sensors
ere installed. The variability in performance of unpainted LWD

ensors considerably exceeds that of painted sensors (Sentelhas
t al., 2004b). The accuracy of LWD estimates also varied con-
iderably over time at sites where a single unpainted sensor
as installed compared with estimates at sites where multiple
npainted sensors were deployed (Figs. 4 and 5). This variability
ould introduce considerable spatial and temporal error in LWD
odels, which makes it difficult to assess spatial portability of LWD
odels. Therefore, it would be preferable to use painted sensors

or further validation studies on spatial portability of LWD mod-
ls.

The accuracy of the Fuzzy model appeared to be similar to that
f physical models when painted LWD sensors were the standard
f comparison. For example, Sentelhas et al. (2006) reported that a
hysical model using measurements of net radiation as input data
ad MAE of 1.1 and 1.9 h day−1 at Elora and Piracicaba, respec-
ively. In our study, these values for the Fuzzy model were 1.4
nd 2.6 h day−1, respectively, at the same sites in the same year
Table 3). This suggested that MAE for the Fuzzy model could be
omparable to that for a physical model at sites where painted sen-
ors were installed. However, this preliminary conclusion needs
urther validation in field studies at sites where input data for phys-
cal models are available.

Although the Fuzzy model had greater accuracy than other mod-
ls at sites where painted sensors were used to measure LWD, it had
elatively large errors in LWD estimation at some of those sites,
.g., O’Neill (Table 3). Because the Fuzzy model depended on net

adiation estimated under the assumption of clear sky conditions,
t sometimes underestimated incoming long wave radiation when
loud cover was present. Thus, the accuracy of the Fuzzy model
ould be proportional to the frequency of events in which net

adiation estimates were accurate. For example, the Fuzzy model
eteorology 150 (2010) 871–880 879

had relatively large errors in LWD estimation under semi-arid cli-
mate conditions in Costa Rica due to errors in estimating incoming
long wave radiation (Kim et al., 2005). The effect of clouds on LWD
estimation during dew periods prompted the development of a
cloudiness modelling function (Madeira et al., 2002; Sentelhas and
Gillespie, 2008). Evaluation of a model to estimate the sky radiation
was not within the scope of the present study.

Our results confirmed that the Fuzzy model would be preferable
to the CART model in terms of accuracy and portability. Both Fuzzy
and CART models require air temperature, RH, and wind speed as
inputs. However, estimation error for the CART model was greater
over space and time than for the Fuzzy model in previous studies
(Kim et al., 2004, 2005). The CART model resulted in greater errors
in LWD estimation than the Fuzzy model (Table 3). In the present
study, the CART model had greater MAE than the Fuzzy model at
all sites where painted sensors were installed except at Elora.

Sentelhas et al. (2008) showed that the optimum threshold
for the RH model differed among sites. Our results supported the
view that, for acceptable accuracy, the RH model would need a
site-specific threshold. For example, �1 values for the RH model
were relatively low at sites where painted wetness sensors were
installed. Furthermore, CVk values for the RH model were consid-
erably higher than those from other models across sites where
painted sensors were installed, which indicated that the RH model
had relatively low spatial portability.

It may be challenging to determine a site-specific threshold for
the RH model in practice. For example, Sentelhas et al. (2008) found
that the optimal threshold for the RH model was 83% at Ames.
When this threshold was applied to estimate LWD at Ames using
the data set included in our study, the �1 value for the RH model
with the site-specific threshold was similar, i.e., 0.82, to that for the
original RH model using a 90% threshold (0.83). At Macleay, the k
value increased from 0.61 to 0.83 when the threshold was replaced
with 82%. However, the application of the same threshold at Cor-
vallis, which is about 50 km distant from Macleay, reduced the k
value from 0.51 to 0.35. These results suggest that the benefit of the
site-specific threshold could be marginal or negative, depending on
weather conditions at a given site in a given year. It would be nec-
essary to collect LWD measurements for multiple sites over several
years in order to determine the site-specific threshold in a region
for the RH model. However, a potent advantage of the RH model –
simplicity in estimating LWD – could outweigh such shortcomings
at sites for which wind speed and/or solar radiation data are not
available. Further study to optimize methods for determining the
RH threshold is therefore merited.

Our study demonstrated that it was useful to determine val-
ues of the k statistic in order to quantify compatibility of LWD
models with LWD sensors. Several indices, including critical suc-
cess index and false alarm rate (Schaefer, 1990), have been used
to quantify the accuracy of LWD models (Sentelhas et al., 2008).
However, these indices focus on one class of wetness occurrence,
i.e., wet or dry. Sentelhas et al. (2008) also used the Willmott agree-
ment index, which assumes that observations are free of errors
(Willmott et al., 1985). However, discrepancy between wetness
measurements and actual wetness occurrence has been reported
even when painted sensors were used (Lau et al., 2000). Alterna-
tively, the k statistic was useful to quantify the degree of agreement
between wetness sensors and LWD models for both wet and dry
events without depending on any assumptions. At Silverton, for
example, the �1 values for the Fuzzy and RH models were 0.84
and 0.80 whereas the k values for these models were 0.64 and 0.31,

respectively. These results suggested that high level of accuracy for
the RH model was achieved by chance rather than assessment of
weather conditions. Thus, the k statistic could be used as an alterna-
tive measure to determine performance of LWD models in further
validation studies.
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Sutton, J.C., Gillespie, T.J., Hildebrand, P.D., 1984. Monitoring weather factors in
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Our results showed that accuracy of the Fuzzy model could be
omparable to that of physical models. Major advantages of the
uzzy model over physical models are the small number of input
ariables and simplicity in calculation (Kim et al., 2004). Further
eld validation is needed to assess use of the Fuzzy model to replace
hysical models at sites where input data for physical models are
arely available.
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